Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Front Med (Lausanne) ; 9: 988559, 2022.
Article in English | MEDLINE | ID: covidwho-2287528

ABSTRACT

Background: The impact of nirmatrelvir/ritonavir treatment on shedding of viable virus in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Methods: A prospective cohort study evaluating mildly ill COVID-19 patients was conducted. Virologic responses were compared between nirmatrelvir/ritonavir-treatment and supportive care groups. Risk factors and relevant clinical factors for shedding of viable virus were investigated. Results: A total of 80 COVID-19 patients were enrolled and 222 sputum specimens were collected. Ten patients were dropped during follow-up, and 33 patients in the nirmatrelvir/ritonavir and 37 in the supportive care groups were compared. The median age was 67 years, and 67% were male. Clinical characteristics were similar between groups. Viral loads decreased significantly faster in the nirmatrelvir/ritonavir group compared with the supportive care group (P < 0.001), and the slope was significantly steeper (-2.99 ± 1.54 vs. -1.44 ± 1.52; P < 0.001). The duration of viable virus shedding was not statistically different between groups. In the multivariable analyses evaluating all collected specimens, male gender (OR 2.51, 95% CI 1.25-5.03, P = 0.010), symptom score (OR 1.41, 95% CI 1.07-1.87, P = 0.015), days from symptom onset (OR 0.72, 95% CI 0.59-0.88, P = 0.002), complete vaccination (OR 0.09, 95% CI 0.01-0.87, P = 0.038), and BA.2 subtype (OR 0.49, 95% CI 0.26-0.91, P = 0.025) were independently associated with viable viral shedding, while nirmatrelvir/ritonavir treatment was not. Conclusion: Nirmatrelvir/ritonavir treatment effectively reduced viral loads of SARS-CoV-2 Omicron variants but did not decrease the duration of viable virus shedding.

2.
Am J Infect Control ; 48(12): 1520-1532, 2020 12.
Article in English | MEDLINE | ID: covidwho-635274

ABSTRACT

INTRODUCTION: As has happened in other emerging respiratory pandemics, demand for N95 filtering facemask respirators (FFRs) has far exceeded their manufacturing production and availability in the context of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. One of the proposed strategies for mitigating the massive demand for N95 FFRs is their reuse after a process of decontamination that allows the inactivation of any potentially infectious material on their surfaces. This article aims to summarize all of the available evidence on the different decontamination methods that might allow disposable N95 FFRs to be reused, with emphasis on decontamination from SARS-CoV-2. METHODS: We performed a systematic review of the literature in order to identify studies reporting outcomes of at least 1 decontamination method for inactivating or removing any potentially infectious material from the surface of N95 FFRs, specifically addressing issues related to reduction of the microbial threat (including SARS-CoV-2 when available), maintaining the function of N95 FFRs and a lack of residual toxicity. RESULTS: We identified a total of 15 studies reporting on the different decontamination methods that might allow disposable N95 FFRs to be reused, including small-scale energetic methods and disinfecting solutions/spray/wipes. Among these decontamination methods, ultraviolet germicidal irradiation and vaporized hydrogen peroxide seem to be the most promising decontamination methods for N95 FFRs, based on their biocidal efficacy, filtration performance, fitting characteristics, and residual chemical toxicity, as well as other practical aspects such as the equipment required for their implementation and the maximum number of decontamination cycles. CONCLUSIONS: Although all the methods for the decontamination and reuse of N95 FFRs have advantages and disadvantages, ultraviolet germicidal irradiation and vaporized hydrogen peroxide seem to be the most promising methods.


Subject(s)
COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Masks/virology , N95 Respirators/virology , COVID-19/virology , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL